সমান্তরালগ্রাম এবং রম্বসের মধ্যে পার্থক্য

সুচিপত্র:

সমান্তরালগ্রাম এবং রম্বসের মধ্যে পার্থক্য
সমান্তরালগ্রাম এবং রম্বসের মধ্যে পার্থক্য

ভিডিও: সমান্তরালগ্রাম এবং রম্বসের মধ্যে পার্থক্য

ভিডিও: সমান্তরালগ্রাম এবং রম্বসের মধ্যে পার্থক্য
ভিডিও: সমান্তরালগ্রাম VS রম্বস 2024, নভেম্বর
Anonim

সমান্তরাল বৃত্ত বনাম রম্বস

সমান্তরালগ্রাম এবং রম্বস হল চতুর্ভুজ। এই পরিসংখ্যানগুলির জ্যামিতি হাজার হাজার বছর ধরে মানুষের কাছে পরিচিত ছিল। গ্রীক গণিতবিদ ইউক্লিডের লেখা "এলিমেন্টস" বইটিতে বিষয়টিকে স্পষ্টভাবে বিবেচনা করা হয়েছে।

সমান্তরালগ্রাম

প্যারালেলোগ্রামকে চারটি বাহু সহ জ্যামিতিক চিত্র হিসাবে সংজ্ঞায়িত করা যেতে পারে, যার বিপরীত বাহু একে অপরের সমান্তরাল। আরও স্পষ্টভাবে বলতে গেলে এটি একটি চতুর্ভুজ যার দুটি জোড়া সমান্তরাল বাহু রয়েছে। এই সমান্তরাল প্রকৃতি সমান্তরালগ্রামকে অনেক জ্যামিতিক বৈশিষ্ট্য দেয়।

ছবি
ছবি
ছবি
ছবি
ছবি
ছবি
ছবি
ছবি

একটি চতুর্ভুজ একটি সমান্তরালগ্রাম যদি নিম্নলিখিত জ্যামিতিক বৈশিষ্ট্যগুলি পাওয়া যায়৷

• দুই জোড়া বিপরীত পক্ষের দৈর্ঘ্য সমান। (AB=DC, AD=BC)

• দুই জোড়া বিপরীত কোণ আকারে সমান। ([latex]D\hat{A}B=B\hat{C}D, A\hat{D}C=A\hat{B}C[/latex])

• যদি সন্নিহিত কোণগুলি সম্পূরক হয় [ল্যাটেক্স]D\hat{A}B + A\hat{D}C=A\hat{D}C + B\hat{C}D=B\hat {C}D + A\hat{B}C=A\hat{B}C + D\hat{A}B=180^{circ}=\pi rad[/latex]

• একটি জোড়া বাহু, যা একে অপরের বিপরীত, সমান্তরাল এবং দৈর্ঘ্যে সমান। (AB=DC এবং AB∥DC)

• কর্ণগুলো পরস্পরকে দ্বিখণ্ডিত করে (AO=OC, BO=OD)

• প্রতিটি তির্যক চতুর্ভুজকে দুটি সর্বসম ত্রিভুজে বিভক্ত করে। (∆ADB ≡ ∆BCD, ∆ABC ≡ ∆ADC)

আরও, বাহুর বর্গক্ষেত্রের যোগফল কর্ণের বর্গক্ষেত্রের সমষ্টির সমান। এটিকে কখনও কখনও সমান্তরালগ্রাম আইন হিসাবে উল্লেখ করা হয় এবং পদার্থবিদ্যা এবং প্রকৌশলে এর ব্যাপক প্রয়োগ রয়েছে। (AB2 + BC2 + CD2 + DA2=AC2 + BD2)

উপরের প্রতিটি বৈশিষ্ট্য বৈশিষ্ট্য হিসাবে ব্যবহার করা যেতে পারে, একবার এটি প্রতিষ্ঠিত হয় যে চতুর্ভুজ একটি সমান্তরাল।

সমান্তরালগ্রামের ক্ষেত্রফল এক বাহুর দৈর্ঘ্য এবং বিপরীত দিকের উচ্চতার গুণফল দ্বারা গণনা করা যেতে পারে। অতএব, সমান্তরালগ্রামের ক্ষেত্রফলকেহিসাবে বলা যেতে পারে

সমান্তরালগ্রামের ক্ষেত্রফল=ভিত্তি × উচ্চতা=AB×h

ছবি
ছবি
ছবি
ছবি

সমান্তরালগ্রামের ক্ষেত্রফল পৃথক সমান্তরালগ্রামের আকৃতি থেকে স্বাধীন। এটি শুধুমাত্র ভিত্তির দৈর্ঘ্য এবং লম্ব উচ্চতার উপর নির্ভরশীল।

যদি একটি সমান্তরালগ্রামের বাহু দুটি ভেক্টর দ্বারা প্রতিনিধিত্ব করা যায়, তাহলে ক্ষেত্রফল দুটি সন্নিহিত ভেক্টরের ভেক্টর পণ্যের (ক্রস পণ্য) মাত্রা দ্বারা প্রাপ্ত করা যেতে পারে।

যদি AB এবং AD বাহুগুলিকে যথাক্রমে ভেক্টর ([latex]\overrightarrow{AB}[/latex]) এবং ([latex]\overrightarrow{AD}[/latex]) দ্বারা প্রতিনিধিত্ব করা হয়, তাহলে এর ক্ষেত্রফল সমান্তরাল বৃত্তটি [latex]\left | দ্বারা দেওয়া হয় \overrightarrow{AB}\times \overrightarrow{AD} right |=AB\cdot AD \sin \alpha [/latex], যেখানে α হল [latex]\overrightarrow{AB}[/latex] এবং [latex]\overrightarrow{AD}[/latex]।

নিম্নে সমান্তরালগ্রামের কিছু উন্নত বৈশিষ্ট্য রয়েছে;

• একটি সমান্তরালগ্রামের ক্ষেত্রফল একটি ত্রিভুজের ক্ষেত্রফলের দ্বিগুণ যা এর যে কোনো কর্ণ দ্বারা তৈরি হয়।

• সমান্তরালগ্রামের ক্ষেত্রফলকে মধ্যবিন্দুর মধ্য দিয়ে যাওয়া যেকোনো রেখা দ্বারা অর্ধেক ভাগ করা হয়।

• যেকোনও নন-ডিজেনারেট অ্যাফাইন ট্রান্সফরমেশন একটি প্যারালেলোগ্রামকে অন্য সমান্তরালগ্রামে নিয়ে যায়

• একটি সমান্তরাল বৃত্তের ঘূর্ণনশীল প্রতিসাম্য ক্রম 2

• একটি সমান্তরালগ্রামের যেকোনো অভ্যন্তরীণ বিন্দু থেকে বাহু পর্যন্ত দূরত্বের সমষ্টি বিন্দুর অবস্থান থেকে স্বতন্ত্র

রম্বস

একটি চতুর্ভুজ যার সব বাহু সমান দৈর্ঘ্যে তাকে রম্বস বলে। এটি একটি সমবাহু চতুর্ভুজ নামেও পরিচিত। এটিকে একটি হীরার আকৃতি বলে মনে করা হয়, যা তাসের মতোই।

ছবি
ছবি
ছবি
ছবি
ছবি
ছবি
ছবি
ছবি

রম্বসও সমান্তরালগ্রামের একটি বিশেষ ক্ষেত্রে। এটিকে একটি সমান্তরালগ্রাম হিসাবে বিবেচনা করা যেতে পারে যার চারটি বাহু সমান। এবং এটি একটি সমান্তরালগ্রামের বৈশিষ্ট্য ছাড়াও নিম্নলিখিত বিশেষ বৈশিষ্ট্য রয়েছে৷

• রম্বসের কর্ণ পরস্পরকে সমকোণে দ্বিখণ্ডিত করে; কর্ণগুলি লম্ব।

• কর্ণ দুটি বিপরীত অভ্যন্তরীণ কোণকে দ্বিখণ্ডিত করে।

• সংলগ্ন বাহুর অন্তত দুটি দৈর্ঘ্যে সমান৷

রম্বসের ক্ষেত্রফল সমান্তরালগ্রামের মতো একই পদ্ধতিতে গণনা করা যেতে পারে।

সমান্তরালগ্রাম এবং রম্বসের মধ্যে পার্থক্য কী?

• সমান্তরালগ্রাম এবং রম্বস হল চতুর্ভুজ। রম্বস হল সমান্তরালগ্রামের একটি বিশেষ ক্ষেত্রে।

• সূত্র বেস ×উচ্চতা ব্যবহার করে যে কোনোটির ক্ষেত্রফল গণনা করা যেতে পারে।

• কর্ণগুলি বিবেচনা করে;

– সমান্তরালগ্রামের কর্ণগুলো পরস্পরকে দ্বিখণ্ডিত করে এবং সমান্তরালগ্রামকে দ্বিখণ্ডিত করে দুটি সর্বসম ত্রিভুজ গঠন করে।

– রম্বসের কর্ণ পরস্পরকে সমকোণে দ্বিখণ্ডিত করে এবং গঠিত ত্রিভুজগুলি সমবাহু।

• অভ্যন্তরীণ কোণ বিবেচনা করে;

– সমান্তরালগ্রামের বিপরীত অভ্যন্তরীণ কোণগুলি আকারে সমান। দুটি সন্নিহিত অভ্যন্তরীণ কোণ সম্পূরক৷

– রম্বসের অভ্যন্তরীণ কোণগুলি তির্যক দ্বারা দ্বিখণ্ডিত হয়৷

• দিক বিবেচনা করে;

– একটি সমান্তরাল বৃত্তে, বাহুর বর্গক্ষেত্রের যোগফল কর্ণের বর্গক্ষেত্রের সমষ্টির সমান (সমান্তরালগ্রাম সূত্র)।

– একটি রম্বসে চারটি বাহু সমান হওয়ায় একটি বাহুর বর্গক্ষেত্রের চারগুণ তির্যকের বর্গক্ষেত্রের সমষ্টির সমান৷

প্রস্তাবিত: